Status of ELM Simulating Plasma Gun

T.K. Gray, B.C. Masters, R. Stubbers¹, D.N. Ruzic

Plasma Material Interaction Group University of Illinois, Urbana-Champaign

¹Starfire Industries, LLC

Outline

- Overview of current ESP-gun machine
 - Pulse forming network, pre-ionization source, diagnostics
- Magnetic Field Topology
- Electrical Characteristics
- Plasma Parameters
- IR Measurements
- Summary

Introduction and Goals

- Type 1 Edge Localized Modes
 - 10 MW/m² on diverter surfaces
 - Create heat loading problem
 - Create debris and impurities from the diverter
- ESP-gun
 - Laboratory machine to reproduce ELM plasmas
 - Test heat loading and material properties under a simulated, laboratory ELM plasma

ESP-gun

- RF pre-ionization source
- ECR magnets for down stream field
- Conical, theta coil
 - − ~ 5° taper

Target Area

Diagnostics - presently

- High Voltage, high bandwidth probe
- Rogowski Coil
- Optical Emission
 Spectroscopy
- Electric Probes

Pulse Forming Network

- 3 smaller PFN's
 - 55 μF, 500 nF Capacitor
 - 6 kJ total energy storage capacity
 - Low inductance transmission lines
 - ~ 100 kHz frequency
- Triggered Spark Gaps
- Each PFN is independently triggered

Voltage and Current

PFN Results and Improvements

- 10 50 kA peak coil currents
- 250 μs total pulse length per PFN
- Rise time, $\lambda/4 \sim 13 16 \, \mu s$

- L_{PFN} = 500 nH (cap inductance)
 - $-\lambda/4$ is limited by caps!!!

Magnet Field Topology

~ 990 G on target

Typical TLP Trace

Plasma-Facing Components Meeting, May 9-11, 2005, Princeton, NJ

Negative Charge

ILLINOIS

Plasma Behavior

- Upswing of the voltage
 - B_{coil} aligned with B_{ext}
- Downswing of the voltage
 - B_{coil} reversed with respect to B_{ext}
- Field Reversed Configuration (FRC) ?

Flow Velocity

 Estimate v from time of arrival of n_e

$$< x > = 36 cm$$

$$< v > = 4.5(10)^4$$
 m/s

Summary

- Pulse Forming Network
 - 50 kA, 250 μs per PFN
 - Multiple (3) PFNs → pulse length ~ 1ms
- Peak Plasma Parameters (at 50 kA, 2kJ in)
 - $-n_e \sim 1(10)^{18} / m^3$
 - $-T_{\rm e} \sim 15 20 \text{ eV}$
 - $< v > = 4.5(10)^4 \text{ m/s}$
- Possible FRC Formation

Acknowledgements

- ALPS/DOE Contract: DEFG02-99ER54515
- STTR Starfire Industries, LCC
- PMI Group Members:
 - Mike Jaworski
 - Lab Technician, Matt Hendricks
 - Dan Schulz, Patrick Mangan, Joe Mestan

